Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Aging (Albany NY) ; 9(3): 627-649, 2017 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-28351997

RESUMO

Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response.Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.


Assuntos
Senilidade Prematura/metabolismo , Envelhecimento/metabolismo , Cálcio/metabolismo , Metabolismo Energético/genética , Proteínas Supressoras de Tumor/metabolismo , Adiposidade/genética , Envelhecimento/genética , Senilidade Prematura/genética , Animais , Sinalização do Cálcio , Homeostase/genética , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Proteínas Supressoras de Tumor/genética
4.
Elife ; 42015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25667983

RESUMO

The transcriptional coactivator Yes-associated protein (Yap) promotes proliferation and inhibits apoptosis, suggesting that Yap functions as an oncogene. Most oncogenes, however, require a combination of at least two signals to promote proliferation. In this study, we present evidence that Yap activation is insufficient to promote growth in the otherwise normal tissue. Using a mosaic mouse model, we demonstrate that Yap overexpression in a fraction of hepatocytes does not lead to their clonal expansion, as proliferation is counterbalanced by increased apoptosis. To shift the activity of Yap towards growth, a second signal provided by tissue damage or inflammation is required. In response to liver injury, Yap drives clonal expansion, suppresses hepatocyte differentiation, and promotes a progenitor phenotype. These results suggest that Yap activation is insufficient to promote growth in the absence of a second signal thus coordinating tissue homeostasis and repair.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células/genética , Hepatócitos/metabolismo , Fosfoproteínas/genética , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Tetracloreto de Carbono/toxicidade , Proteínas de Ciclo Celular , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteínas de Sinalização YAP
5.
Cancer Cell ; 24(2): 143-4, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23948294

RESUMO

Inflammation is increasingly recognized as an essential component of tumor development, but the origin of tumor-associated inflammation remains largely unknown. In this issue of Cancer Cell, Pribluda and colleagues find that chronic stress initiates senescence-inflammatory response, which can promote tumorigenesis in the absence of exogenous inflammatory triggers.


Assuntos
Transformação Celular Neoplásica/patologia , Inflamação/patologia , Neoplasias/patologia , Animais
6.
Cell Stem Cell ; 6(4): 309-322, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20362536

RESUMO

Cell competition was originally described in Drosophila as a process for selection of the fittest cells. It is likely to play an important role in tissue homeostasis in all metazoans, but little is known about its role and regulation in mammals. By using genetic mosaic mouse models and bone marrow chimeras, we describe here a form of cell competition that selects for the least damaged cells. This competition is controlled by p53 but is distinct from the classical p53-mediated DNA damage response: it persists for months, is specific to the hematopoietic stem and progenitor cells, and depends on the relative rather than absolute level of p53 in competing cells. The competition appears to be mediated by a non-cell-autonomous induction of growth arrest and senescence-related gene expression in outcompeted cells with higher p53 activity. p53-mediated cell competition of this type could potentially contribute to the clonal expansion of incipient cancer cells.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos da radiação , Comunicação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Células Clonais , Dano ao DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Genes Dominantes/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Modelos Biológicos , Mutação/genética , Fenótipo , Radiação Ionizante , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Proteína Supressora de Tumor p53/genética
7.
Proc Natl Acad Sci U S A ; 105(5): 1686-91, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18223157

RESUMO

Multiple cell-autonomous mechanisms exist in complex metazoans to resist oncogenic transformation, including a variety of tumor- suppressor pathways that control cell proliferation and apoptosis. In vertebrates, additional mechanisms of tumor resistance could potentially rely on cancer cell elimination by specialized cytotoxic leukocytes, such as natural killer (NK) cells. Such mechanisms would require that cancer cells be reliably distinguished from normal cells. The ligands for NKG2D, an activating NK cell receptor, are expressed on many tumor cell lines and at least some primary human tumors. However, it is unknown whether their expression is induced as a direct result of oncogenic transformation in vivo. We provide evidence that NKG2D ligands are induced on spontaneously arising tumors in a murine model of lymphomagenesis and that c-Myc is involved in their regulation. Expression of NKG2D ligands is induced at an early, distinct stage of tumorigenesis upon acquisition of genetic lesions unique to cancer cells, potentially defining a critical step in carcinogenesis. This finding suggests that the regulation of NKG2D ligands depends on a mechanism for intrinsic sensing of oncogenic transformation.


Assuntos
Transformação Celular Neoplásica/imunologia , Vigilância Imunológica , Linfoma/imunologia , Receptores Imunológicos/metabolismo , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Ligantes , Camundongos , Camundongos Mutantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Imunológicos/agonistas , Receptores de Células Matadoras Naturais , Transdução de Sinais
8.
Mol Cell Biol ; 26(7): 2531-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537899

RESUMO

DDB1, a subunit of the damaged-DNA binding protein DDB, has been shown to function also as an adaptor for Cul4A, a member of the cullin family of E3 ubiquitin ligase. The Cul4A-DDB1 complex remains associated with the COP9 signalosome, and that interaction is conserved from fission yeast to human. Studies with fission yeast suggested a role of the Pcu4-Ddb1-signalosome complex in the proteolysis of the replication inhibitor Spd1. Here we provide evidence that the function of replication inhibitor proteolysis is conserved in the mammalian DDB1-Cul4A-signalosome complex. We show that small interfering RNA-mediated knockdown of DDB1, CSN1 (a subunit of the signalosome), and Cul4A in mammalian cells causes an accumulation of p27Kip1. Moreover, expression of DDB1 reduces the level of p27Kip1 by increasing its decay rate. The DDB1-induced proteolysis of p27Kip1 requires signalosome and Cul4A, because DDB1 failed to increase the decay rate of p27Kip1 in cells deficient in CSN1 or Cul4A. Surprisingly, the DDB1-induced proteolysis of p27Kip1 also involves Skp2, an F-box protein that allows targeting of p27Kip1 for ubiquitination by the Skp1-Cul1-F-box complex. Moreover, we provide evidence for a physical association between Cul4A, DDB1, and Skp2. We speculate that the F-box protein Skp2, in addition to utilizing Cul1-Skp1, utilizes Cul4A-DDB1 to induce proteolysis of p27Kip1.


Assuntos
Proteínas Culina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Quinases Associadas a Fase S/metabolismo , Complexo do Signalossomo COP9 , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Expressão Gênica , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/genética
9.
J Biol Chem ; 279(11): 9937-43, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14701809

RESUMO

Recently we showed that the Schizosaccharomyces pombe ddb1 gene plays a role in S phase progression. A mutant S. pombe strain lacking expression of the ddb1 gene exhibited slow replication through both early and late regions causing a slow S phase phenotype. We attributed the phenotypes in the ddb1 strain to an increased activity of the replication checkpoint kinase Cds1. However, the basis for a high basal Cds1 activity in the ddb1 strain was not clear. It was shown that Ddb1 associates with the Cop9/signalosome. Moreover, the phenotypes of the Deltaddb1 strain are remarkably similar to the Deltacsn1 (or Deltacsn2) strain that lacks expression of the Csn1 (or Csn2) subunit of the Cop9/signalosome. Cop9/signalosome cooperates with Pcu4 to induce proteolysis of Spd1, which inhibits DNA replication by inhibiting ribonucleotide reductase. Therefore, we investigated whether Ddb1 is required for the proteolysis of Spd1. Here we show that a S. pombe strain lacking expression of Ddb1 fails to induce proteolysis of Spd1 in S phase and after DNA damage. Moreover, deletion of the spd1 gene attenuates the Cds1 kinase activity in cells lacking the expression of ddb1, suggesting that an accumulation of Spd1 results in the increase of Cds1 activity in the Deltaddb1 strain. In addition, the double mutant lacking spd1 and ddb1 no longer exhibits the growth defects and DNA damage sensitivity observed in the Deltaddb1 strain. Our results establish an essential role of Ddb1 in the proteolysis of Spd1. In addition, the observation provides evidence for a functional link between Ddb1 and the Cop9/signalosome.


Assuntos
Proteínas de Ciclo Celular/química , Dano ao DNA , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Separação Celular , DNA/química , Relação Dose-Resposta à Radiação , Citometria de Fluxo , Deleção de Genes , Glutationa Transferase/metabolismo , Mutação , Fenótipo , Testes de Precipitina , Ligação Proteica , Ribonucleotídeo Redutases/antagonistas & inibidores , Fase S , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitina/metabolismo , Raios Ultravioleta
10.
J Biol Chem ; 278(39): 37006-14, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12857752

RESUMO

Schizosaccharomyces pombe Ddb1 is homologous to the mammalian DDB1 protein, which has been implicated in damaged-DNA recognition and global genomic repair. However, a recent study suggested that the S. pombe Ddb1 is involved in cell division and chromosomal segregation. Here, we provide evidence that the S. pombe Ddb1 is functionally linked to the replication checkpoint control gene cds1. We show that the S. pombe strain lacking ddb1 has slow growth due to delayed replication progression. Flow cytometric analysis shows an extensive heterogeneity in DNA content. Furthermore, the Deltaddb1 strain is hypersensitive to UV irradiation in S phase and is unable to tolerate a prolonged replication block imposed by hydroxyurea. Interestingly, the Deltaddb1 strain exhibits a high level of the Cds1 kinase activity during passage through S phase. Moreover, mutation of the cds1 gene relieves the defects observed in Deltaddb1 strain. The results suggest that many of the defects observed in Deltaddb1 cells are linked to an aberrant activation of Cds1, and that Ddb1 is functionally linked to Cds1.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Quinase do Ponto de Checagem 2 , Proteínas Quinases/fisiologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...